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Our Results

• 𝑛-point metric space

–Distances satisfy triangle inequality

• Requests arrive over time

–Requests identified by arrival time and location

• Goal: Output a perfect matching minimizing ∑distances + ∑delay

• Our benchmark: the competitive ratio

max
𝑖𝑛𝑝𝑢𝑡 𝐼

𝐸 𝐴𝐿𝐺 𝐼

𝑂𝑃𝑇 𝐼

• Min-cost bipartite perfect matching with delays (MBPMD)

– Each request also has polarity (+ or –)

– Equal number of requests of each polarity

–Can only match requests of opposite polarities (+ with –)

The MPMD Problem

• Example: matching passengers to drivers in ridesharing platforms (e.g., Lyft)

• How much would you wait before matching?

Would you match immediately? What if another driver arrives
shortly after?

• In traditional online algorithms, requests are served upon arrival.

• Here, service can be delayed, but incurs cost for delay [EKW16].

• Many applications: players in online gaming platforms, kidney exchange, labor 
markets…

Inherent tradeoff:
Cost of distance vs. cost of delay

Embedding Arbitrary Metrics into Trees
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• Standard technique in approximation and online algorithms

• An arbitrary finite metric space can be randomly embedded it into a tree 
metric such that the distances are distorted by 𝑂 log 𝑛 [FRT04].

• The points of the original metric space are the leaves of the tree.

• The height of the trees can be made 𝑂 log 𝑛 [BBMN15].

• Allows us to reduce the problem to trees

• Definition: 𝐴𝐿𝐺 is 𝛽, 𝛾 -competitive if for every 𝑆𝑂𝐿,
𝐴𝐿𝐺 ≤ 𝛽 ⋅ 𝑆𝑂𝐿𝑑𝑖𝑠𝑡 + 𝛾 ⋅ 𝑆𝑂𝐿𝑑𝑒𝑙𝑎𝑦

where 𝑆𝑂𝐿𝑑𝑖𝑠𝑡 is the cost due to the distances
and 𝑆𝑂𝐿𝑑𝑒𝑙𝑎𝑦 is the cost due to the delays in 𝑆𝑂𝐿.

Algorithms

• 𝑂 1 ,𝑂 ℎ𝑒𝑖𝑔ℎ𝑡 -competitive algorithms for MPMD and MBPMD on trees

• Implies 𝑂 log 𝑛 -competitive algorithms for general metrics

Lower Bounds

• An Ω log 𝑛 / log log 𝑛 lower bound on randomized algorithms for MPMD

• An Ω log 𝑛 / log log 𝑛 lower bound on randomized algorithms for MBPMD
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• Tentative greedy matching

–Consider vertices from leaves to the root.

–When considering 𝑣, tentatively match any
possible unmatched requests under it.

• Optimal when the number of requests
is balanced

• We maintain a counter for each edge.

• When an edge is used in the greedy matching, we increase its counter.

– For MPMD, the rate is uniform.

– For MBPMD, the rate depends on the imbalance between positive and 
negative requests under the edge.

• When the counter reaches the weight of the edge, that edge is bought.

• Two requests are matched when the entire path connecting them has been 
bought.
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Extensions and Open Problems

• In MBPMD, there is a gap: 𝑂 log 𝑛 vs. Ω log 𝑛 / log log 𝑛

• Deterministic algorithms for general metrics

• Decentralized markets

• Many-to-one matching (in order to model carpooling)

• Different input assumptions, e.g., more structured metric spaces


